Publications internationales

2025
Chems Eddine Berrehail, Zineb Bouslah. ( 2025), Periodic solutions for a class of fifth-order differential equations. Arab Journal of Mathematical Sciences : Emerald , https://doi.org/10.1108/AJMS-07-2020-0024
2022
Chems Eddine Berrehail, Amar Makhlouf. ( 2022), Periodic solutions for a class of perturbed sixth-order autonomous differential equations. Arab Journal of Mathematical Sciences : Emerald , https://doi.org/10.1108/AJMS-02-2022-0045
2020
Chems Eddine Berrehail, Zineb Bouslah, Amar Makhlouf. ( 2020), On the limit cycles for a class of eighth-order differential equations . Moroccan J. of Pure and Appl. Anal. (MJPAA)
Amina Feddaoui, Jaume Llibre, Chemseddine Berhail et Amar Makhlouf. ( 2020), Periodic solutions for differential systems in ℝ3 and ℝ4. Applied Mathematics and Nonlinear Sciences https://doi.org/10.2478/amns.2020.2.00079

Communications internationales

2024
Berrehail Chems Eddine . (2024), Periodic solutions for a class of perturbed fifth-order differential equations via averaging theory. The International Conference on Fractional Calculus and Applications: December 26-30, 2024 https://icofca.com/
2022
Chems Eddine Berrehail. (2022), Periodic solutions for a class of perturbed fifth-order autonomous differential equations via averaging theory. Workshop Internation on Applied Mathematics: 6-8 December 2022.https://sites.google.com/view/iwam2022/program
2016
Chems Eddine Berrehail. (2016), Periodic solutions of the third-order differential equation. 2nd International Conference on Pure and Applied Sciences: Yildiz Technical University, Turkey, Jun 1-5, 2016http:icpam-04.naturalspublishing.com/

Communications nationales

2024
Berrehail Chems Eddine . (2024), Periodic solutions for a class of perturbed sixth-order autonomous differential equations.. The National Conference: Mathematical Modeling for Dynamic Systems M2DS: june 26-27, 2024 https://h2tayeb.wixsite.com/m2ds-24/
2023
Chems Eddine Berrehail. ( 2023), Periodic orbit for a class of eighth-order non-autonomous differential equations via Averaging theory